
w

w

(_A_A-C_-I':;?5]J) GPOLIND SYSTFMS nEVEL_MfNT

_VI_I_ENT (_SDE) SOFTWARE C_i_FI_SU_ATI(_N

MANAGEMENT (Pese_rch Inst. for Computing

and [nformdtion Systems) 43 p
G_16t

Ground SystemsDevelopment

N_L-Z9710 _

UnclJs

0105103

............Environment (GSDE)

Software Configuration Management

i

t=
Victor E. Church

D. Long

Z.-"__'_/ ,"

Ray Hartenstein /c, 5/o_..5
Computer Sciences Corporation

Alfredo Perez-Oavila _ _

University of Houston-Clear Lake

: April 30, 1992

Cooperative Agreement NCC 9-16
" Research Activity No. SE.34

i

=
w

NASA Johnson Space Center

Mission Operations Directorate

Space Station Ground Systems Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

! I lll

TECHNICAL REPORT

: j

: i

1

id

: , - :j

J

:i
ld

7: : : : !
i

The RICIS Concept
wi

31

The University of Houston-Clear Lake es_shed the Research lnstltu__ (or _ :- _
Computingand Information Systems (RICIS) in 1986 to encourage the NASA _

Johnson Space Center (JSC} and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with J_ to jointly define and manage an integrated
of research In advanced data processing technology needed forJSC's _Jprogram

main missions, including administrative, engineering and science responsl- II

billtles. JSC agreed and entered Into a continuing cooperative agreement

with UHCL beginnlng in May 1986, to jointly plan and execute such rese_arch

through RICIS. Additionally. under Cooperative Agreement NCC 9-16, J
computing and educational facIIlties are shared by the two institutions to
conduct the research.

The UHCL/RICI_mtssI_nls _ conduct, coordinate, and disseminate res_ch

and professional level education In compu/lng and Information systems to

serve the needs of the gove_ent, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL. the mission is being

implemented through interdisciplinary Involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and HlLrn_ties, and Natural and Applied Sciences.

RICIS also collaborates with industry In a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re_

search organizations, having common research interests, to provide addi-

tlonal sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research and education programs, while other research

organizations arc involved via the "gateway" concepL

A major role of RICiS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and Informa-

tion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and Integrates

d

mini

W

technical results Into the goals of UHCL, NASA/JSC and Industry.

w

Ground Systems Development
Environment (GSDE)

Software Configuration Management

w

w

w

i

w

=

w

m

f\
\

m

m

m
m
[]

_,_i_ • _ i _i_!_L_i_ i _ _!_ m
!

i

mmm
!
W

m

m

mmm

_j

m

[]
w

m

i
I
,I

!

|

!

il
m

|

|
i!

|

il
W

w_

II

r

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Computer Sciences Corporation in cooperation with the

University of Houston-Clear Lake. The members of the research team were: Victor

E. Church, D. Long and Ray Hartenstein from CSC and Alfredo Perez-Davila from

UHCL. Mr. Robert E. Coady was CSC program manager for this project during

the initial phase. Later, Mr. Ray Hartenstein assumed the role of CSC program

manager. Dr. Perez-Davila also served as RICIS research coordinator.

Funding was provided by the Mission Operations Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Thomas G. Price of the ADPE and Support Systems Office, Space Station

Ground Systems Division, Mission Operations Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

r

m
m

I

!1
q
m

m

k

I.
m

m

m

\L
B

m

; . m

i

g

B

|

|
m
I

Pll

|
m

m

W

J

W

I

m

[]
g

CSC/TR-92/6054

Ground Systems Development
Environment (GSDE)
Software Configuration Management

E ,

w

w

= •

Prepared for

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas

by

w

w

w

w

=

Computer Sciences Corporation

System Sciences Division
Beltsville, Maryland and League City, Texas

and

The University of Houston - Clear Lake
Research Institute for Computers and Information Sciences
Clear Lake, Texas

under

Subcontract No. 075

RICIS Research Activity No. SE-34
NASA Cooperative Agreement NCC 9-16

April 1992

m

Preparation:
Quality Assurance:
Approval:

V. Church

D. Long
R. Hartenstein
A. Perez-Davila

CSC/TR-92/6054
GSDE Software CM

u

R

m

\

m

l
I

!
m

m

i
[]

m

W

!
I

!1

|

J

|
L

IN

i
m

J

i

w

CSC/SSD - UHCL/RICIS ii 30 April 92 mw

CSC/TR-92/6054
GSDE Software CM

Abstract

This report presents a review of the software configuration management (CM)

plans developed for the Space Station Training Facility (SSTF) and the Space

Station Control Center. The scope of die- CM assessed in this report is the

Systems Integration and Testing Phase of the Ground Systems development life

cycle. This is the period following coding and unit test and preceding delivery to

operational use. This report is one of a series from a study of the interfaces

among the Ground Systems Development Environment (GSDE), the development

systems for the SSTF and the SSCC, and the target systems for SSCC and SSTF.

This is the last report in the series.

The focus of this report is on the CM plans developed by the contractors for the

Mission Systems Contract (MSC) and the Training Systems Contract (TSC). CM

requirements are summarized and described in terms of operational software

development. The software work_flows proposed in the TSC and MSC plans are

reviewed in this context, and evaluated against the CM requirements defined in

earlier study reports. Recommendations are made to improve the effectiveness of

CM while minimizing its impact on the developers.

z
w

J

m

I -

CSC/SSD -

PRECEDING PAGE BLANK NOT FILMED

UHCL/RICIS iii 30 April 92

CSC/TR-92/6054
GSDE Software CM

m

!
i

lip

R

m
S

L

II

I

lip

== i:

m
I

II

W

i

11

I

I

N

m

II

wID

z

m

W

i

11

m

CSC/SSD - UHCL/RICIS iv 30 April 92

!11

g

F

W

m

w

r

w

W

Table of Contents

CSC/TR-92/6054

GSDE Software CM

Section 1 - Introduction ... 1

1.1 Assessment summary ... 1

1.2 Ground system software development. ... 2

1.3 Organization of Report .. 3

1.4 References and related documentation ... 4

Section 2 = Requirements iAnalysis Context) .. 5

2.1 Goals of CM requirements ... 5

2.2 CM Requirements Summary .. 6

2.3 Space Station SSE CM support _........................ 8

2,4 Options and alternatives ... 9

Section 3 - Operational Considerations , .. I I

3.1 Development process overview .. 12

3.2 Clean-slate approach to formal CM ... 14

3.2.1 IQTE-resident product files ,.................... 18

3.2.2 GS/SPF=resident product files .. 19

3.3 Combined forma_mformal CM ;.. 20

3.4 Using the SPE as a conduit .. 22

3.5 The mosaic effect .. 24

3.5.1 Compilation Libraries .. 24
3.5.2 Testbed construction .. 25

Section 4 - Space Station Control Center ... 27

4.1 OvcraU software workflow .. 27

4.2 Configuration management .. 28

4.3 Assessment .. 28

Section 5 - Space Station Training Facility .. 31

5.1 Overall software workflow i.. 31

5.2 Configuration management .. 31

5.3 Assessment .. 32

Section 6 - Recommendations .. 35

6.1 Space Station Control Center ... 35

PRECEDING PAGE BLANK NOT FILMED

CSC/SSD - UHCL/RICIS v 30 April 92

CSC/TR-92/6054
GSDE Software CM

6.2 Space Station Training Facility .. 36

Glossary ... 37

: 4,

List of Figures

1. Ground Software Development Env_w0timent .. 3

2. Develop-build-test process ,.....,.........,. 12

3. CM Process s mbols ... 13

4. Clean-slate approach to formal CM ... 16

5. iQ_-resident product fries '....."" '.18

6. Storing product fries in the GS/SPF ... 19

7. Combining formal and informal CM'..21

8. Using the SPE as a conduit 23

9. Mixed libraries in the IQTE ... 24

10. Mixed product files in the IQTE ... 26

m

I

III

il
lib

!
tl

II

m.
m

i

!
II

!
m

m

n
R

l
r!l

m

II

i

i
m

II

i

g

III

D
l
lm

!

g

CSC/SSD - UHCL/RICIS vi 30 April 92

Ill

i

m

w

Vm.

W

_L :
W

W

L

W

CSC/TR-92/6054
GSDE Software CM

Section 1 - Introduction

As part of the Space Station Freedom Program, the Mission Operations Directorate

(MOD) at JSC 1 is developing a Space Station Training Facility (SSTF) and a Space

Station Control Center (SSCC). The software components of these systems will be

developed in a collection of computer systems called the Ground Systems Development

Environment (GSDE). The GSDE will make use of tools and procedures developed by

the SSFP SSE contractor. Both the SSTF and the SSCC will be developed using both

shared and duplicated elements of the GSDE.

The SSTF is being developed under the Training Systems Contract (TSC). The SSCC is

being developed under the Mission Systems Contract (MSC). As part of the project

planning and development effort, the MSC and TSC contractors have developed plans

for CM of software during coding and all stages of testing. At several points these plans

have been reviewed by NASA and by this study task, leading to changes and

improvements in the CM plans. (Previous assessments by this study are documented in

CSC/TM-91/6102, Interface Requirements Analysis, and CSC/TM-91/6061, Operations

Scenarios. See section 1.3 for citations and related documentation).

As the planning continues and becomes more detailed, further reviews (such as this one)

will be conducted to ensure that the in_grity and reliability of developed software remain

high priority considerations. This review is based on a set of goal-centered CM

requirements that emphasize the end result of CM without specifying its implementation.

During the Systems Development and Acquisition Phase 2 , SSTF and SSCC software

will be configuration-managed using contractor-specified tools in their respective

software production environments (SPEs). When the software is transitioncd into the

Systems Integration and Testing Phase following SubSystem Acceptance Test (SSAT)

(or sooner, depending on contractor-dependent integration procedures), it will be placed

under formal CM on the Ground Systems/SPF (GS/SPF) using the tools provided by the

SSE. Integration testing and build-up to delivery will involve both contractor-managed

and the SSE-supplied CM capabilities.

1.1 Assessment summary

During the two years of this study effort, the CM plans of both contractors have changed

to reflect changes in the GSDE and have evolved to include more specifics and fewer

potential problems. Given the size of the projects, the importance of CM in long-

duration system reliability, and the growing emphasis on total quality management, the

CM plans of both contractors show seri0us commitment to professionalism.

Acronyms and abbreviations that ate in common use in the Space Station Freedom community are not spelled
out in the text, but are defined in the Glossary at the end of this report

2 The MSC/TSC System Development Life Cycle is described in JSC-25519, DA3 Software Development Metrics
handlxx)k

CSC/SSD - UHCL/RICIS I 30 April 92

CSC/TR-92/6054
GSDE Software CM

Both CM plans, however, fall short of the amount of detail that might be expected at the

current stage of these projects. Neither project has chosen to embrace fully the CM

capabilities developed by the SSE, nor have they provided equivalent detail about their

alternative plans. Since the SSE provides a reasonable baseline for CM (which would

allow the projectstoestablish detailed CM p!ans with relatively small efforts), the lack of
detail is a matter of concern.

The SSCC approach toCM cun'endy involves a non-standa_rd, partly non-COTS set of

tools and capabilities (the CORCASE-Atherton proposal) about which little information

is available. Although the overall SSCC CM approach is sound, there seems to be

considerable risk in the lack of details of the plan. An in-depth, independent assessment
is recommended.

The SSTF approach to CM involves distributing CM functionality across three different
" env_d_ents tO m__o_r_id_dn_:ease-o_use. Th_:s_c "CMtools tobe used in

two of these environments are not yet identified. Since the overall SSTF CM plan

emphasize_s ease- of development rather thanproduct accountability, thi s lack of specific
detail poses a risk in terms of assessing long-term maintainability of the system. We
recommend that the operationally convenient distributed CM system should be

supplemented w_th automated procedures that placeaU delivered software under GS/SPF

CM control. Furthermore, when the specifics of the distributed CM system are

identified, those systems should be inde_ndend_reviewed.

1.2 Ground system software development

Ground systems software for the SSCC and SSTF will be developed and tested using

combinations of development computers and workstations .(collectively referred to as
software production environments), a Ground Systems SPF (GS/SPF), and target

platforms that are essentially the operational target environments or equivalent.

Configuration management will take place in all three environments M software
progresses-_om Code and unit test _ugh integrati_n'to 61_i_o-naI'use. Figure 1 shows

the basic development context. The target environments include IBM mainframe
computers, Unix-based workstations, and mission-specific special-purpose hardware.

Software for the SSTF and SSCC will be developed in the SPEs or in subcontractor
facilities, and accepted into the GSDE following SSAT for systems integration and

testing. The software is then placed under formal CM on the GSDE host (the GS/SPF).

The integration and test will take place in the target environment, or on platforms that are

essentially eqt_valent to the target.

For Convenience in this report, the testing environments wiU be referred to as

Integration and Qualification Test Environments (IQTEs). (The two projects use

different terms for the target environments. IQTE is a synonym for either term.)

Following the Systems Integration and Yestingphase, qualification testing (QT) will be
performed prior to delivery to operations.

CSC/SSD - UHCL/RICIS 2 30 April 92

I

B

!
E
!

i

m
IN

I
I

m

J

m

l

D

I
I

J

m
i

I

II

u

J

m

i

m
i

W

V

V

w

v

m

w

CSC/TR-92/6054

GSDE Software CM

ource code development,unit'_

sting,test item development J
valopment: software J

production environment ($PE) I
(Ratio wls I sewers) J

Oevel, _nent LAN

Acceptance-testsd

",._ce code

The GS/SPF host is intended to
provide the only formalconduit between
the development environments and the

target systems. All software that is

submittedfor formal tesling on the target
platformis first placed under formal CM.

During development, the STM system is

fFormal CM of source code, _ used to control software being testedon the target. STM makes use of

Iobject code, test date, etc. j contractor CM as well as formal CM,

ISTM of filesduring testand
Iinmgradon

_, GS/SPF(Amdahi) Test software,Test items,

buildproducts,_
pm,:_JSSmetrics(Hardware and software

iintegratlonformaltest,creatlon_
[of operational software J

• .i_e a_. sJort._.t_.d..de..b.b_..... I Tarot: int_ratio., quallncationI
Ltast environment (IQTE) .,)

Fisure 1. Ground System Development Environment (GSDE)

The GSDE serves as the basic development environment for both the SSCC and the

SSTF; only the GS/SPF is shared between the two.

The primary language for development of Space Station Freedom software is Ada*. The

SPEs will include Ada-compilation platforms (e.g., Rational R1000 computers) to

support Ada development. It isalso probable that a substantial amount of non-Ada

code, primarily C-language, will be developed (or reused) and supported. Workstations

and file servers will be used along with the Ada compilation platforms to support

development. Configuration management and software measurement in the SPEs will be

performed by the developers, using contractor-specified tools.

The GS/SPF is an IBM-compatible mainframe with a separate instance of the SSE SPF

software for each project (SSCC and SSTF). The GS/SPF will host both the formal CM

system and the STM system, along with disk storage supporting both systems. Formal

CM will be used to manage software following Acceptance Test. For reasons of security

and software integrity, the GS/SPF will serve as the conduit for moving software from

the SPEs to the targets.

1.3 Organization of Report

Following this Introduction, Section 2 reviews the software CM requirements that form

the basis for evaluation. Section 3 describes operational Considerations of trying to

perform CM in a distributed environment. Section 4 presents a description and

assessment of the SSCC CM plans, and Section 5 does the same for the SSTF CM plans.

Section 6 presents the recommendations of the study team.

* Ada is a trademark of the U. S. Department of Defense, Ada Joint Program Office

CSC/SSD - UHCL/RICIS 3 30 April 92

CSC/TR-92/6054
GSDE Software CM

1.4 References and related documentation
...... : __ -:_ _ _

Atherton Technology, "Software tools integrate the management of complex design

products", from Computer Design, August 1, !99 !

Atherton Technology, "Software BackPlane", product news release, 1991

Babich, Waynel Software ConXgura_on Management: _oordination for Team

Productivity, Addison-Wesley, 1986

CAE-Link Corporation, SS_ _oftwarecbnfi_tion Management Approach,

September 1991 (brief'rag)

CAE-Link Corporation, Space Station Training Facility Ground SystemDevelopment

Environment Current Capabilities, December 1991 (briefing)

Card, David, and'Glass, Robert, Measuring Software Design Quat#y,Prentice Hall, 1990

Computer Sciences Corporation, Digita ! Systems Development Methodology, May 1990

Computer Sciences Corporati0n, "GroundSystems O_elopment Environment (GSDE)

Interface Requirements Analysis- Operations Scenarios, CSC/TM-91/6061, February
1991

Computer Sciences Corporation, Ground Systems Development Environment (GSDE)

Interface Requirements A halysisFina]Repqrt_ C_C/TM-9 i/6i02, June 199 !

Computer Sciences Corporation. SSE Software TestManagement (_) Capability:
Using STM in the Ground Systems Development Environment (GSDE), February 1992

Computer Sciences Corporation.Configuration Management and Software Measurement
in the Ground Systems Development Environment (GSDE), February 1992

Lockheed Missiles and Space Company, SSE System Users Guide; Space Station

Freedom SoftwareSupportEnviro_ent(D_23), LMSCF255423, March 1991

Loral Space Information Systems, Configuration Management Subsystem: Subsystem

Functional Requirements Review (SSFRR) Presentation, October 1991 (briefing)

Loral Space Information Systems, Ground Systems Development Environment: Software
Production Environment: Review of Current Capabilities, October 1991 (briefing)

Loral Space Information Systems, GSDE Augmented with CORCASE, January 1992

(brier'rag)

NASA JSC, DA3 Software Development Metrics Handbook, Version 1, JSC-25519,
December 1991

I

m

w

n

m

ql

tl

m

n

m

11

!
m

!

g

i
II

U

w
D

!
E

In

m

B
w

11
II

CSC/SSD - UHCL/RICIS 4 30 April 92

n
I

L .

E

v

V

w

u

CSC/TR-92/6054
GSDE Software CM

Section 2 - Requirements (Analysis Context)

This section summarize the CM requirements published earlier (February 1992). It

establishes the context--the accomplishment of CM objectives--for the interface study

and the assessments in section 6.

2.1 Goals of CM requirements

Configuration management is a process mechanism* used to ensure that a delivered

product is a mac reflection of the effort that went into its construction. On a large

project, software CM is necessary for the delivery of reliable, maintainable software.

CM mechanisms must be applied throughout the development process or they will not be

effective.

The assessment of CM, however, can focus either on the continuing mechanisms (a

process view) or on the end-result of those mechanisms. This study is based on the latter

view.

The SSE CM requirements and design documents provide an example of the process-

oriented view, with detailed specifications of processes, formats, and relationships.

Typical users guides and standards and practices manuals also embody this view.

Because of the diversity of the systems being developed, and the range of options

available to achieve effective CM (see section 2.4), this view seemed to be too

constraining for the RICIS evaluation. Accordingly, the end-item view of CM was

developed to support assessment of different approaches based on expected results.

The end-result view of CM focuses what CM is intended to accomplish, rather than on

the mechanisms involved. Thi s goalToriented view prescribes the conditions of

controlled, identified, traceable Softw_ products without specifying the details of the

process.

The requirements developed in the earlier study report (CM and SW Measurements in the

GSDE) and s_zed below are based on this end-item, goal-oriented view of

software.

As a process, CM is valuable (essential, in our view) for efficient rn_agement of

software development. That is to say, CM would be cost-effective for large projects even

discounting itsval-ue in assuring prtddc_iuality. Both the MSC and the TSC contractors

have described their plans to use CM in this manner. That use of CM, however, is a

contractor prerogative and is not addressed in this assessment.

* The term "processmechanism"is used in contrastto "productmechansims"which are applied to a productat the
end of a process rather than during its course.

CSC/SSD - UHCL/RICIS 5 30 April 92

CSC/TR-92/6054
GSDE Software CM

As a product quality assurance mechanism, a CM system must be able to demonstrate

that the delivered product includes exactly those versions of components that were tested

and approved. It must also be able to demonstrate that all test certifications claimed for

the product were actually performed on the software being delivered (and not on some

undelivered version of the product). _ : _

In order to support sustaining engineering of the product, the CM system must ensure

that the product can be regenerated from fries that are write-locked (that is, fries that can
be read but not changed). It must also support traceability to the set of requirements,

interface specifications, and design documents that were in effect at the time of delivery.

This report is based on assessments of the SSTF and SSCC plans for CM in the context

of those desired end-item conditions. The requirements summarized below formed the

basis of the assessment (with some reference to the earlier, higher-level set of

requirements described in the June, 1991 Interface Requirements Analysis). The

assessment (and the requirements) focus on the goals to be achieved, rather than on the

mechanisms chosen to achieve them.

2.2 CM Requirements Summary

The numbered items in sans-serif text are the requirements. The indented paragraphs
Under each_l_ement are explanato_ material and not part-o_ the-req-uirements

specification.
L _

1. Source fileS for all delivered software must be placed under NASA-

managed CM.

When you deliver software to operations: you must place the source code

and any ancillary fries for all developed software under NASA-managed

CM (e.g., the SSE-prqvided CMsys_m on_¢GS/SP _, Thi's does not
.... _lcq_ae_ssi0n s_lfic data_ w_Ki_rl_d_@ar_ate controi, or

unmodified COTS software. You must also record the steps (e.g.,

compilation, linking) that were followed (or can be followed) in building
....... the de-fire'hie software _fr0m the controtiedfild. _

2, The software that is delivered must be the same as the software that was

tested.

The QT process certifies software ashaving passed ce_ tests and
therefore as meeting the associated requirements. You must keep records

to show that the software used in the QT process was built from the same

source files that are used for the delivery. You must be able to show that

the same build options (e.g., opdmizaton settings used during

compilation) were used both for QT and for delivery.

m
m

W

m

!
II

mR
I

J

mR
!

im

J

tim

m

W

m
lit

i

IP

II1'

!

"i

I

CSC/SSD - UHCL/RICIS 6 30 April 92 J

W=_.¢

--4

w

s

w

g

o

.

1

.

CSC/TR-92/6054

GSDE Software CM

All files necessary to recreate the qualification tests for delivered software

must be placed under NASA-managed CM.

All test scripts and test data used in QT must be write-locked and stored,

available to support retesting or regression testing. The STM mechanism

(provided by the SSE on the GS/SPF) provides snapshot and archive
mechanisms that would be suitable for meeting this requirement.

Configuration control mechanisms for software in the Systems Integration
and Testing phase must involve permanent records and independent
authorization.

Once software is transitioned to SIT and QT, all changes must be

recorded. This requirement says that the person approving a change

cannot be the same as the person initiating and performing the change, and

the approval must be recorded. The SSE CM system provides appropriate

mechanisms for this approval and recording. Non-SSE CM must provide

some equivalent mechanisms.

The status of all approved changes shall be recorded and accessible.

For any approved change, it must be possible to determine which
components will be affected, and which versions of those components.

The status (e.g., applied, deferred, not applicable) of a change to an

particular source code f'de must be available (that is, accessible to inquiry

or included in a report). The change status of components in snapshots of

systems should also be accessible.

The status of all DRs and STRs shall be recorded and accessible.

From a sustaining engineering perspective, the relative stability of

components is a valuable indicator of future reliability. The status of
discrepancies (degree of criticality, components implicated, resolution,

identification of test case or activity that triggered the report) provides an

avenue to assessment of system quality. As long as all discrepancies are

recorded, the absence of discrepancy reports can be taken as a positive

indicator of the quality of the system.

Applicable interface specifications shall be archived with software delivery

snapshots.

Interface specifications, like requirements, are subject to change. Even

without requirements changes, there are shifts of functionality between
hardware and software, between developed software and COTS, and

between developed subsystems and systems. In order to perform

sustaining engineering on a fielded system, it is important to have

CSC/SSD - UHCL/RICIS 7 30 April 92

CSC/TR-92/6054
GSDE Software CM

recorded the interface agreements that existed for that system at the time

of delivery. ,,

2.3 Space Station SSE CM support.

The GS/SPFprovides the _Oracle-bas_SSE CM SYstemfor focal control of software.
This CM system is described in the SSE System User'sGui_, D_I #23. The CM

system uses the GS/SPF f'fle mechanisms for storage of data, and the Oracle database

management system to maintain information about configuration items. The CM system

provides mechanisms for:

confi_ation identification,
change-instrumentproeessing, : _

component checkin and checkout,

snapshot and archive management,
access control, and

status reporting.

Most functions of the CM system are available in both interactive menu and command-

line batch modes of operation. The CM system is intended to interoperate with

developmental CM systems (such as the rational CMVC system), and provides
mechanisms for transfer and operations on collectionSof Components as well as on

individual components.
£Z-_E- 7-- _ "..... • : :

_e SF/SPF will also provide an Oracle-based Software TestManagement (STM)

capability to manage f'des and test scripts during integration and qualification testing.

STM provides a mechanism for moving software between the development and the target

environments in a controlled fashion. Through the use of command-_e operations,

STM can interoperate with the SSE CM system and with any developmental CM that

supports command-line (non-interactive) processing.

STM provides a controlled environment for defining tests, assembling testbeds and test
articles, and recording results of testing. (The testing itself is on the target platform, and
isnot under control of $_.) STM also provideS a mechanism to record snapshots and

build information. It is anticipated that the STM build mechanisms will be translated

into the formal build-delivery process to be provided in OI 7.0 of the SSE.

Together with contractor-developed procedures and automated mechanisms, the SSE CM

and STM capabilities provide tools that can be used to satisfy the requirements
summarized above.

!
w

IIw

i
g

m

IS

!
m

W

z-
II

B

II

III

i

lib

III

i
w
m
m

IS

IB
I

IB

m
!

m

g

qli

== =

i

MW

m

lib

i
m

CSC/SSD - UHCL/RICIS 8 30 April 92 i

%,,,

v

=

w

2.4

CSC/TR-92/6054
GSDE Software CM

Options and alternatives

There is no single way to achieve the goals identified for CM in the GSDE. Given the

range of different computers, workstations, servers, application characteristics, and

languages of available reuse libraries, multiple approaches are caUed for. The need to

integrate mainframe-based Ada code with workstation-based C and Ada code requires

either multi-platform CM support or multiple CM systems. The tools provided by the

SSE (STM and the CM system) provide most of the required capability, but not all of it.

During the SI&T phase, software will be uploaded from controlled storage for

compilation on the target platforms. The compilation products may be kept in the target

environment for extended periods, to minimize file transfer and recompilation time.

These products need to be controlled in the target, as they will be used for formal testing.

At the same time, software may be uploaded from the developers' workstations to the

target for developmental (e.g., unit) testing on the target. The target-based CM system

needs to be able to distinguish between developmental and controlled software, lest

deliveries inadvertently include untested code. The SSE-provided tools provide only

limited capability to deal with this situation.

Variations of procedural controls and automated CM tools will be needed to effect

control in this diverse development-CM-target environment. This diversity is the reason

for using goal-oriented rather than process-oriented requirements in assessing the MSC

and TSC plans for software CM.

=

m

m

CSC/SSD - UHCL/RICIS 9 30 April 92

L__

!

al r

im

g

_ i _ _ _ _z_ i _ i_ _ _ _i_7 _ - _

II
m
ii

II

m

i
I

"!_

I

I

I
11w

i
II

_ z

I
I

IV

p
I

m
ii

mI
ml

I

i
I

II

Ii
im

I

m

W

z

Ip

m

v

I
i

II

11r

W

L
w

m

w.

Section 3 - Operational Considerations

CSC/TR-92/6054
GSDE Software CM

There is a constant tension in any large software development effort between the

flexibility needed for responsive implementation and the control needed to ensure project

completion. This tension is evidenced in the operational tradeoffs that are made between

complete freedom for developers and rigorous control for the purpose of quality

assurance. Programmers argue that rigorous control is antthetical to creative

progamming, while project-level managers argue that maintainability is equally as

important as creative solutions.

Operationally this tension leads to a range of CM solutions. The formality of CM varies

from minimal control on the developers' own workspaces, through moderate control

when a subsystem enters testing, to rigorous control when a product undergoes QT or

delivery. This range of CM solutions, incorporated in both MSC and TSC plans,

provides a mechanism for escalating the level of control throughout development.

However, it also provides a mechanism for subverting the intent of CM by applying too

lax a standard for transitioning to more formal control.

There is a risk in any schedule-dominated organization, like the manned space program,

of magnifying the importance of local milestones. When programmers face deadlines

with almost-working code, they have a tendency to postpone or ignore requirements for

CM in favor of getting the software to work. The long-range implications of poorly-

controlled software do not seem nearly as immediate as the schedule that calls for a

delivery now. It's the job of the QA organization and established procedures to provide a

countervailing influence.

Both the SSTF and the SSCC projects include mechanisms for graduated CM during the

life cycle. In this section we take a look at some of the operational considerations
involved in implementing those mechanisms with either automated or manual

procedures.

Automated procedures are those which basically don't require the programme r (or
manager) to choose whether or not to uti.lize available CM mechanisms. Manual

procedures, in contrast, rely on personal discipline; they permit the developer to bypass

controls. As an example, the SSE-provided CM system requires a change instrument for

any change to controlled software. The SSE-provided STM capability, on the other
hand, makes use of externally controlled software and inherits whatever level of control

(or lack thereof) is provided by the owner of the software. In this regard formal CM is

automated while STM uses manual procedures.

In this section (and in this study) we are concerned with configuration management at the

interface between the development environments and the testing environments.

Originally that interface was completely defined within the GS/SPF, but as the two

projects have evolved alternative interfaces have been identified. The following
subsections address the typical development process, the basic mechanisms of control,

and the possibilities and implications of bypassing such control.

PRECEDING PAGE BLANK NOT FILMED

CSC/SSD - UHCL/RICIS 11 30 April 92

3.1 Development process ove iew

CSC/TR-92/6054
GSDE Software CM

The reality of a complex project is that many pieces must come together for integration

and testing. Any given subsystem is likely to have interfaces with several others, either

dynamically or through Sh_ files. Testing involves executing several different pieces

of software, concurrently or serially.

During development, all or most of these different pieces evolve in parallel as different

subsystems move from unit test to deliverable status, and then through serial versions of

delivery. Many elements of a __ven testbed are likely to be "scaffolding", softw_e

designed and built to support testing but destined for replacement by deliverable

software. Other elements are temporary versions of software that exist between bug fixes

in a development cycle. Given such a dynamic environment, it can be difficult to

determine exactly what was tested with what.

Figure 2 illustrates the process o(assembling a testbed configuration _om its constituent

elements. Command scripts (stored command fries), indicated by the box at lower left in

the figure, are used to orchestrate the assembly process, from compilation to staging.

(Other command fries may also be used to control the testing process, but that process is

not shown).

Source file
generation

Intermediate test elements
products

i/'_ _,. library J teat items

testbed
configuration

,_teat data]

. scripts

I

:'_"_ _ library J _,

testbedelements_ •

testdata ,i > _ /'>_. library)

' test products :

transfer, compile, build, stage, and test command _d_s

test results and information

systemcomponents

J
J

information and control I
I

Figure 2. DevelopBu;kl-Test Process.

Primary source files, compiled and built under script control into libraries and products,
come together in the test phase. Testing results feed back into source development.

m

g

g_

!

[]

m

B

E

m

!
m

m

W

!
m

!

I

g

!

m

m

m

m

I
m
m

i
m

W

R

W

CSC/SSD - UHCL/RICI$ -" "_" 12 30 April 92

i

m

t

=

r

w

v

==l=_

r_
W

CSC/TR-92/6054
GSDE Software CM

Source files are translated (if necessary) and stored in libraries of software objects,

including test data objects. These objects are used to create executable fries that are

combined into a specific testbed for testing. (The graphic shapes in figure 2 were

designed tO indicate the "fitting together" of test item, test data, and supporting testbed.)

As indicated by the feedback arrows going right-to-left, there are specific products

generated in testing that can be retained for subsequent use. These products include

executables from the testbed as well as test data that is output from one test and used as

input to another. There is also a feedback of information that affects all of the source-f'de

column of software components.

The same process, using mission data instead of test data and deliverable software instead

of scaffolding, will be used to generate operational software loads.

Figure 2 portrays the basic steps that are of concern in configuration management of the

development-to-test interface. These elements (source fries, libraries, products) are
further discussed in the remainder of this s_tion.

Figure 3 shows the symbols daat use used in figure 2, along with other that will be used

in later figures to describe possible CM operations. Basically, heavier borders are used

to indicate greater formality of configuration control, and darker shading is used to

signify later steps in the integration and test process.

Configuration control formalism

These symbols are used to indicate the
potential for unrecorded or unapproved
change to a component (a file).

controlled by I

developer J

moderate]control

files are managed by
the developer without
separate approval or
record-keeping

independentCM but
limited review and
physical file security

I formalcontrol I

Figure 3.

rigorous CM; file
changes performed
only by CMO

controlled files are
provided by other
organizations (e.g.,
COTS, flight S/W)
CM process symbols.

Genesis of flies

These symbols differentiate pdmary files
from derived files (e.g., compilation products),
Files (e.g., COTS SeW) from other
organizations are separately classified.

SOUrco
source code, scripts,
test data, etc.

iii!ili iiiiiii!iiiil

r-----q r---_

generated from source
by compilers or other
processors; object code,
libraries, test data, etc.

executable images,
generated tables and
data (e.g., screens), etc.

testbed configuration
generated from test
article, test data, and
supporting software

Heavier borders are used to indicate more formal configuration control. Darker shading

indicates products closer to the delivery stage of software.

CSC/SSD - UHCL/RICIS 13 30 April 92

3.2

CSC/TR-92/6054
GSDE Software CM

Clean-slate approach to formal CM

At the start of a new phase of a development effort, all the myriad elements " are

co0r_ated. _ei-eqS Consis/ency _ong source:_es, libraries, test data, command files,

and testing plans. It is a simple matter to determine what software has been tested, and
what data f'des were used.

As development and testing progresses, a sort of entropy sets in. Software is iteratively

tested and modified by different developers on different schedules. Test data fries evolve

as special cases are _d_ to test additional requ]-rements, lY)/0_ers share command
fries and test scaffolding, both to save time and to make use of tested workarounds.

Precise knowledge of what software is being tested with what version of test data gets

harder and harder to come bye* :

To address this problem, development leaders often resort to periodic zero-basing of the

project or subsystem. All so-urce f'desare _frozen _d_ompii"edtogenerate def'med

libraries and executables. Redundant copies and minor variants of command fries are

deleted from common access. Everyone starts fresh from a common baseline.

Experience with mainframe-centered NASA ground systems development has shown the

effectiveness of this approach even with FORTRAN-based projects. Source code may be

developed on the mainframe 0r on workstations; whenready for integration testing it is

added to a source-control library that supports maintenance of controlled and "test"

versions of software. The source is compiled on _e mainframe into load modules which
serve as testbeds for fimia-er testlng. _ _ _ : _

These load modules can be used as libraries of object code by using linkage editing tools.

(This capabili_ is similar to the functioning of Ada libraries that include source and

intermediate code for use in Conslructing executable images.) Test articles are link-

edited into controlled load modules for testing, avoiding the need for massive

re,compilation or build procedures. When combined=with a source library control system

that supports both development and test versions of code and data, this approach has been

proven on a large number of ground system software efforts.

Even with source code and access control, however, the status of libraries and load

modules gradually becomes uncertain due to the non-automated procedures involved in

making changes. Since every programmer needs access to the "controlled" files,

questions arise as to which versions of fixes and workarounds have been applied to the

official version of the load modules. At that point, as often as weekly during heavy

testing and debug efforts, the old load module is erased and a new load module is

generated from controlled source. All necessary fLxes are rtrst applied to the source code

to ensure that the new baseline is up-to-date.

Developers thereby startfrom a new "zero-based" baseline.

CSC/SSD - UHCL/RICIS 14 30 April 92

!

g

!
m
Q

|

!
II

!
m

W

!
U)

!
n
up

I
II

m

g

!

|
il

m

I

|
m

i

n
m

m

=

L _

CSC/TR-92/6054
GSDE Software CM

On activities as large as the Space Station Freedom ground support systems, it will not

generally be practical to zero-base an entire project or subsystem. Both the SSCC and

the SSTF involve distributed systems with multiple parallel development efforts,

complex real-time interactions, and integrated project schedules. Unlike the mainframe-

centered experiences described above, there may not be a single point or a small set of

items to erase and recompile. Mechanisms and approaches are needed to meet the

requirements summarized in section 2 for reliability and maintainability of ground

system software.

One of the primary mechanisms for quality assurance of the software is the use of

separate computer systems for development, and for integration and test. The transition

from SPE to IQTE can serve the same function as the "zero-basing" described above.

This section discusses ways that the independence of the IQTE can be used to good

advantage.

Figure 4 describes the basic "clean-slate" approach to using the IQTE as a consistency

and reliability mechanism.

v

T

m

CSC/SSD - UHCL/RICIS 15 30 April 92

CSC/TR-92/6054
GSDE Software CM

W

J

S/W Production Environment (SPE)

L,

1
_V

I

"; _v

GS/SPF with formal CM

Integration, qualification
teat (lOT) environment

no development files are
resident in the IQTE; only
COTS and NDI software

1 Files A, B, C are promoted from contractor CM to formal CM on the GS/SPF

SPE
(filesdeleted to avoid
concurrentmaintenance
problem)

GS/SPF

2

IQTE
load image

.....[i!jr !ii!its

........ T 4

V, ibrary/_ ---->C _ii:_!_::i:i 13

3
;1 -i

2 Files A, B, C are transferred to target,
3 compiled into library A-B-C
4 and linked to form executable ABC

5 ABC is tested on the target
6 reportsare returned to the SPE

SPE

GS/SPF

IQTE
load image

possiblyretained
for further testing li:ii_iii

Vlibrary,//_ 7

7 All source files, including development libraries, are deleted from the IQTE

II
Ill

__=
IB

i

IB

E_
D

[]
w

!
!

IB
m
m

lip

|
L=

R

lib

|

!
m

|

!
IB

lip

CSC/SSD -

Figure 4. Clean-slate approach to formal CM

Very hig h reliability is achieved with some performance penalty by erasing all product
fries after use. The CMO places source code under formal control, uploads it to the
IQTE for test, then deletes all products after testing is complete.

UHCL/RICIS 16 30 April 92

m
m

gll

!
III

v

w

v

c_

CSC/TR-92/6054
GSDE Software CM

The starting point for this approach is the set of source files under contractor-managed

CM in the SPE. The files that are ready for testing (whether IT or QT) are checked in to

formal CM, using the SSE-provided CM procedures. Each component to be checked in

must be identified on a change instrument. (A single instrument can be used to check in

an entire subsystem, if desired). The files are copied to the GS/SPF by the developers,

and turned over to the CMO who performs the actual checkin. Note that the only ground

system files on the IQTE are "non-developed items" such as standard libraries (e.g.,

COTS software) and software from other Space Station activities.

Once the files are checked in to formal CM, they should be deleted from the development

library to avoid any chance of inconsistency between duplicate copies.

Using scripts provided by the developers, the CMO copies specific files to the IQTE.

Still under script-based commands, the files are compiled into a library for use in

generating executable files. (There may be more than one library involved, and more

than one executable image.) The compile and build processes produce listings and other

information output which are returned to the developers.

The development products are tested on the IQTE, generating test reports for use in

certifying the software components tested.

At the completion of testing, the product files are deleted from the IQTE. The primary

consideration is that all source files and compilation libraries be erased, so that the next

test sequence does not inadvertently reuse the products of this test. If specific executable

images are required to support testing of other products, they may be retained (locked, of

course, against any modification) on the IQTE.

A primary characteristic of this approach is that software flows from the controlled

environment to the IQTE; only information is fed back. ms ensures that files on the

GS/SPF are always secure. Both MSC and TSC have described their CM plans along

these lines.

This "clean slate" approach ensures that all test items are generated from controlled

source code, but exacts a i_na]ty ha performance. Copying all of the necessary files can

become a significant overhead, and massive recompilation is even more costly. For large

subsystems (e.g., 50-75 K lines of code), recompilation time could become a significant

schedule bottlen_k.

It should be noted that a typical load image generated for integration or qualification

testing might remain "under test" for an extended period of time (e.g., weeks). The need

for recopying and re,compilation is not an everyday requirement. Since copying and

compilation can often be performed during off-peak hours, the performance penalty for

this approach is not so great as it might at first appear.

This approach has the advantage of ensuring that "inadvertent reuse" does not occur, but,

like other aspects of the development process, is subject to cost-benefit analysis.

CSC/SSD - UHCL/RICIS 17 30 April 92

CSC/TR-92/6054
GSDE Software CM

3.2.1 IQTE-resident product files

A modification of the clean slate approach that ad_s_s some 0f_e _rformance issues

is illustrated in figure 5. While it is still the case than no software flows back to the
GS/SPF, some library files_ retained in :the _t6 _ev[atethe recompilafion

problem.

SPE

r-n r-n r--n
\ \

GS/SPF with CM and STM

9

IOTE C/library / _

controlledproductfiles
are retained in IQTE
forfurthertesting

library load imai_e

v

7

1-6
7

8-9

(see preceding figure for activities 1 through 6)

Libraries and executable images are retained on the target under control
from the GS/SPF (e.g., using S'I'M)

New component D and modified component A2 are combined
with previously retained files to generate new products ,

w

i
!

m

m

I

!

I

t

m

Iw

m

i

Ii
II

!
!

g

i

Figure $. IQTE-resident product t'des

Improved performance isachieved with only moderate compromise of security by
..... re_gLco_m_p_'_o-n_u_Ls_ _d _la_xis0urce f'desin-_e I_Q_ -:_

Because of the way advanced compiler systemsoperate, it is impractical to keep only
object fries in a compilation library. Ada compiia-d0fi systems in particular require that

source code be accessible in order to verify interface defLn.itions. While C compilers do
not require source code for related fries, typical SCCS and Make systems do.
A_cordingly, the ii_es bored-in figure-5 represent bTo_source (write-locked,
preferably) and object code.

The intent of re_ing these libraries on the IQTE is not to Support editing and

debugging. Rather it is for the purpose of uploading and compiling other fries which

may require the earlier libraries in order to compile By retaining write=locked source
fries and object code onthe target, it is possl"ble to avoicl hav_g to recopy _a recompile

everything for the sake of a small number of new source code components Editing of

source fries on the target machines should be strictly prohibited, even for unit-test files
(This is the reason for write:locking the tides,)

The MSC CM plan states that this will be the case. The TSC plan is less definite, and

permits debugging of fries that are being unit-tested in the IQTE. The use of a Rational

m

i

I

mi
i

Q

m

g

J

CSC/SSD - UHCL/RICIS 18 30 April 92

%,.,

CSC/TR-92/6054
GSDE Software CM

R1000 as part of the IQTE would facilitate editing in the target environmeat, even if such

modifications are officially discouraged.

As a cautionary . note: developers on the AAS project for the FAA* found that, when
subsystems were developed on Rational computers and uploaded to IBM mab'fframes for

compilation and test, massive recompilation was sometimes preferable to piecemeal

changes and updates. The cost of determining which routines needed recompilation,

using the IBM SLCM configuration management tool, was a significant factor in the

tradeoff analysis.

m

3.2.2 GS/SPF-resident product flies

Leaving product files (especially libraries containing source code) in the IQTE poses
risks of inadvertent use. Another option that reduces the cost of re,compilation while

retaining control of product files is to transfer those files back to the GS/SPF under

configuration control. Figure 6 illustrates this procedure.

SPE

H

::

GS/SPF with CM and STM

7

IQTE

controlledproductfiles
are movedto the GS/SPF
insteadof beingdeleted

ABC

J
i A-B-C :

J

1-6
7

(see preceding figure for activities I through 6)

Libraries and executable images are copied to the GS/SPF and deleted from
the IQTE. On the SPF they are controlled by STM

x_,=-

=

Figure 6. Storing product Flies in the GS/SPF
Performance and security are balanced by keeping compilation products under formal
CM, available for use in subsequent test activities.

The GS/SPF provides the most rigorous confguradon control in the entire GSDE. The

procedure suggested here would place product files (executable images, test data,

compilation libraries, etc.) under configuration control in snapshot form--able to be used,

but not modified, The primary disadvantage to this procedure is that a conduit is opened

* The Advanced Automation System is an Ada-language real-time command and control system buing built on

IBM mainframes using Rational development tools.

CSC/SSD - UHCL/RICIS 19 30 April 92

CSC/TR-92/6054
GSDE Software CM

for f'des to be copied from the target to the development environment. This risk,

however, is quite manageable using the snapshot m_hartism. The SSE'provided STM

has mechanisms in place to receive and control such product files without making them

accessible to editing.

At present' neither TSC nor MSC has indicated any intent to use this procedure. The

MSC approach does not permit any reverse flow of flies from the target to the

development host. TheTSC approach involves h'tain_n_g _ese fiiesln the

"reconfiguration host" in the target environment.

3.3 Combined formal/informal CM

With STMI the GS/SPF has the capability of Supporfin-gaiess formal method of

configuration control, as a complement to the formal CM procedure. This Software Test

Management capability provides for close integration between contractor-managed CM
and the GS/SPF. Figure 7 illustrates the use of this capability to combinefo_al and

informal source code control.

It_often be_ecase °_a-t developers use tested, ceded software as scaffolding for

newly developed code. It is often easier and more reliable to use the actual target of an
interface rather than a test version composed of stubs. Unit testing, therefore, can
combine certified code with newly developed code. STM provides a mechanism for

placing unit-test software under sufficient control to allow it to coexist safely with

formally-c0ntrolled code.

This procedure requires that compilation products from other activities be retained under
CM either in the GS/SPF or in the IQTE. The existing products (e.g., libraries and

executable images) are combined with STM-managed source files to create unit-test

configurations.

The primary risk inherent in this approach is that product fries (such as the compilation

library A-B-C-d-e in figure 7) that include combinations of accepted and unaccepted code

may inadvertently be used for formal testing. I9 ,figure 7, for example, ff the library A-
B-C-d-e were used instead of the original library A-B-C, the presence of not-yet-accepted

components d and e might maskerrors that would otherwise be uncovered during testing.

The STM solution to this riskis toensure _at aU product files _re properly identified as

restdting from specified tests. In this example, the library A-B-C-d-e cottld not be
checked back in to replace A-B-C, because product f'des cannot be updated or replaced

except as part of a specific test procedure.

i

D

!
i

g

w

11

i
i

II

|

i
gll

i

II

!
i

g

i

II

m
I
i
i

g

i

J

i
!
II

!
II
i

IB

l
i

II
I!

J

i
wm
i

ul

CSC/SSD - UHCL/RICIS 20 30 April 92

i

II

CSC/TR-92/6054
GSDE Software CM

=

S/W Production Environment (SPE)

GS/SPF

2

Integration, qualification
test (IQT) environment

controlled libraries are

[i:_J_ I permitted on the target

'_-..

1 Files A, B, C are promoted from contractor CM to formal CM on the GS/SPF and

2 uploaded to the target (IQT) environment under CM control

3 A, B, C are compiled into controlled library A-B-C on the target

SPE

D

GS/SPF with STM

5

IQTE
load image

,,..... 1' 7
-.

4 Unit test files d, e are promoted from developer CM to STM control on the GS/SPF

5 Files d, e are transferred by STM to the IQT environment

6 Files d, e are compiled and added to library A-B-C-d-e under STM (not CM) control

7 STM-controlled executable ABCde is generated from h'braryA-B-C-d-e

SPE

@ N

%
GS/SPF with STM

IQTE load image

8

8 Executable ABCde is tested on the target. Library A-B-C-d-e is not usable for
integration or qualification testing because it includes unit-test components.

CSC/SSD

Figure 7. Combining formal and informal CM

File access and system performanceis aided with the provision of informal mechanisms
for software testing. File integrity is maintained usingthe SSE-provided STM.

- UHCL/RICIS 21 30 April 92

il

CSC/TR-92/6054
GSDE Software CM

!

Q

3.4 Using the SPEasa conduit

Thus far the discussion has assumed that the GS/SPF is the sole conduit between the SPE

and the I_-0rpost-acceptance software. (Software undergomg unit test is not

addressed by this study). However, it is also possible for software to be transferred

direcdy from the SPE to the IQTE, as shown in figure 8.

Source fries would be promoted from contractor-managed CM to formal CM on the

GSISPF, as was the case in figure 4. However, the files would be retained in the SPE as

well, in order to be uploaded to the IQTE directly from the SPE. Compilation on the

target would not be directly based on the files under formal control.
=

As a result of build and test activities on the target platform, there would be several

copies of basic or derived files under various levels of control. The same files would

exist on the SPE in contractor-managed CM, on the GS/SPF in formal CM, in the IQTE

as source files, and perhaps in compilation libraries as weiL (It's also likely that the

programmer has retained a copy of his or her files in private workspace, but that should

not pose a problem for CM). The real risk, of course, is that all of these files would not

be the same even though the CM system would record it so.

(under contractor CM) and propagated to the IQTE without updating the oformally

As suggested in figure 8, it would be entirely possible for changes to be made in the SPE

controlled files. The result is a compilation library and executable image (e.g., A2BC)

that do not correspond to the controlled source code. If those product files are delivered,

or used in other testing, the overall reliability of the development process is significantly

affected.

The CM plans of MSC and TSC both include some mechanisms for bypassing the

GS/SPF in promoting files from the SPE to the target. The MSC proposal using

CORCASE would provide a distinct SPE-to-target interface mechanism. The TSC

proposal would effectively treat the reconfiguration computer as an extension of the SPE

when convenient, and an extension of the target at other times.

There are at least two possible approaches to mitigate the risks inherent in this interface

mechanism. One is to require that all compilation and build for test and delivery be

performed from GS/SPF storage. This would ensure that even if there were CM failures

leading up to testing, the fmal test or delivery would meet the requirements in section 2.

Another approach is to proyi__de" an automated interface between contractor CM and

formal CM to report whenever a source file is Uploaded to the target from the SPE. This

interface would compare the version identification of the uploaded file with the

appropriate formal CM record, and if necessary record that the formally-controlled file

was no longer valid, it is recommended that this be an automated interface.

CSC/SSD - UHCL/RICIS 22 30 April 92

II

_11
J

I
i

II

i
I

m

il

w

II

!
Q

m

II

m

II

m

I
i

I

g

I

I

m

g

m

!

g

B

I

J

!1
i

III

CSC/TR-92/6054
GSDE Software CM

w _

Production Environment (SPE)

GS/SPF with formal CM

2

Integration, qualification
test (IQ'r) environment

1 Files A, B, C are promoted from contractor CM to formal CM on the GS/SPF

2 A, B, C are also uploaded under contractor CM to the target, and kept in
the SPE still under contractor CM (duplicating formal CM)

SPE

¢

GS/SPF

Z

3 Source files A, B, C are compiled into library A-B-C under contractor CM

4 Executable ABC is generated for:testing on the target

SPE 5
6

G,S/SPF

IOTE

r

"_. "...i!ii

7

8

5
6

7-8

File A is modified to be A2 under contractor CM

File A2 is uploaded to the target

A2 is compiled into library replacing component A, and used to generate
executable image A2BC which does not corrrespond with GS/SPF CM

Fisure 8. Using the SPE as a conduit
Files on the GS/SPF become redundant and difficult to certify as original and modified
source files are moved directly from development to target.

CSC/SSD - UHCL/RICIS 23 30 April 92

3.5 The mosaic effect

CSC/TR-92/6054
GSDE Software CM

3.5.1

As noted in the preceding discussions there will be a range of formality in the CM

imposed on files in the IQTE. Unit testing, acceptance testing, IT, QT, and buildup for
delivery will all occur in the same environment. _s r_seS Concerns for two types of

inadvertent mixture of components.

The term mosaic, borrowed from genetics, refers to acomposite that is made up of _

fragments of different origin. In this situation, it describes a test item or configuration

whose origin involves different versions of software. (_Mosaic" also sounds better than

its less precise alternative, "mongrel".)

Compilation libraries

During development, any given subsystem will require___d u_fili_elements from other
subsystems in developing _d testing inter:faces2 'ilffsis pai'tlc_iarly true in the case of

Ada, where interface definitions are owned in common between subsystems. The

situation illustrated in figure 9 can easily occur.

lOT Environment Configuration control domains

developer CM STM domain
domain

Formal CM "version 2" domain
Formal CM "version 3" domain

f pdmarycontribution

supporting contribution
"Versions 2 and 3" represent
sequential developmentefforts

Figure 9. Mixed libraries in the IVT

Since developers will often need access to latest versions of code, sharing of files is
inevitable and difficult to manage.

During early testing of software, developers will routinely borrow code (e.g., Ada

package specs) from other libraries to ensure consistency and save effort. Similarly, to

save effort, these borrowings will become embedded in the command scripts that create

CSC/SSD - UHCL/RIClS 24 30 April 92

U

I
l!
Ill

IB

II

II

i

IV

II

wB

!

II

II

I

m

II

III

m
I

g

m
m
i

II

m
!

r

J

g

IB

w

-..,...

CSC/TR-92/6054
GSDE Software CM

test articles. The availability of multiple libraries serves a valid purpose in facilitating

inter-subsystem and inter-version consistency. It also raises a risk that what actually gets

tested is not exactly what was planned.

One solution is to prohibit the implicit sharing of fries, and to make explicit sharing

subject to formal record-keeping. The goal is not to prevent sharing, only to manage it.

An additional protection is to use file and library access controls to ensure that test

software is only generated from its own approved libraries. When a component is

transitioned from one level of testing to another, it will have access to a different set of

libraries. (This may result in some consternation when a module that worked in unit test

won't even compile during integration testing, but that's one of the reasons for integration

testing.)

The MSC plan for CM has not yet specified policies for the use of libraries in the

CORCASE CM environment. The TSC plan envisions the use of procedural and access-

control mechanisms to address the problem.

3.5.2 Testbed construction

A more complex problem occurs in the construction of testbed configurations for testing

in the IQTE. The library-sharing described above is largely a matter of convenience

during development; it can be managed with access controls on files. During integration

testing, however, the combination of resources from different development streams in

inevitable. Since different developments occur on different schedules, the situation

shown in figure 10 is likely to be the rule rather than the exception.

The primary concern with shared testbed elements, of course, is the impact on

repeatability of the testing process. The various development streams constitute moving

targets, and reconstruction of all of the elements can be impossible without careful

management.

Test data is particularly subject to continuous evolution, both to accommodate more

requirements and to reflect changes in the mission statement (e.g., different launch

profries). But all of the testbed items are mutable, even when the various subsystems

become operational. The recommended approach to managing the mosaic testbed

problem is a combination of snapshots and detailed record-keeping.

Snapshots of test configurations improve the probability that regression testing can be

performed at a later date. (They don't provide an absolute guarantee, if for no other

reason than the possibility of changes in the hardware configuration). Snapshots are

particularly useful in the process of tracking down the point when a fault was introduced

into a system.

CSC/SSD - UHCL/RICIS 25 30 April 92

CSC/TR-92/6054
GSDE Software CM

W

W
Q

lOT Environment Configuration control domains

developer CM STM domain
domain

testbed

\

Formal CM "version 2" domain
Formal CM "version 3" domain

Figure 10. Mixed product files in the IQTE

With several types of testing (unit, acceptance, integration, qualification) occurring in
the same environment, sharing of files is inevitable,

Careful _.._ord-ke_ing simply involves Ixac1_g the provenance of all items that en_r
imo a test1_l. For softwa_,_, these records _ gene_11y p_vidcaccess to the source

code and permit regenerati0nof the if¢/ns, g6i _st data, detailed records will at least

indicate when a particular data set was created and perhaps how it was generated.

The SSE-proposed build-up process, planned for OI 7.0, will involve detailed
information on all stages of the compile and build sequence. That same information,

capture d fo r test a_ti'cles and testbed element s, C_ proyide the informationneeded to
meet the requirements in section 2 concerning reproducibility of testing.

Neither MSC nor TSC has p_vided sufficiently detailed CM plans to determine how--or

Whether--_sp_b_m Wiil_ ad-ckessed. -_...............

m

I

g

m

U

II

J

I

g

i
m

II

i

m

II

m

m

J

!

II

|
B

i

II

i
!

g

J

i

l!

CSC/SSD - UHCL/RICIS 26 30 April 92 l

g

w

q.................__"

Section 4 - Space Station Control Center

CSC/TR-92/6054
GSDE Software CM

The Space Station Control Center will be a complex of IBM mainframe computers,

Unix-based workstations, and special-purpose communications hardware networked to

each other and to NASA communications systems. It is being developed for JSC on the

Mission Systems Contract. The overall software architecture of the SSCC was described

in earlier reports in this study: Appendices B and E of the Interface Requirements

Analysis Report (June 1991) provide a good overview.

The SSCC will be developed with a substantial amount of non-Ada code in order to

capitalize on previous control center development work. Most of the non-Ada code will

be C-language code, and will be used in the consoles (workstations) of the SSCC.

Development approaches have been defined to accommodate this dual-language

approach.

Overall, the approach of the MSC contractor to software CM has been to follow the

requirements and recommendations made by JSC, including the SSE CM capabilities and

the recommendations of the RICIS study.

4.1 Overall software workflow

In January, 1992, the MSC contractor proposed an alternative structure for the SSCC

Software Production Environment. This alternative replaces the Rational R1000-based

development environment with a VAX-based system, and replaced SSE-developed or

provided software with custom or different off-the-shelf software. Not all COTS

software is changed in the MSC proposal, but the basic development structure is

significantly changed.

The primary argument made for this alternative is the need to integrate existing (C-

language) software into the SSCC development. The SSE-defined system is almost

totally Ada-directed, and was considered unsuitable for the SSCC project. (Note that the

flight-software orientation of the SSE is also a consideration, and has been in a factor in

this RICIS study effort.)

The alternative was described in the January briefing, "GSDE augmented with

CORCASE". A proprietary software management system called CORCASE, developed

by Lorars Western Development Lab, would function in the software repository role held

by the Rational R1000. The Ada compiler from Verdix would replace the Rational Ada

compiler, and the Software Backplane from Atherton Technologies would provide the

tool integration capabilities currently provided by Rational and SSE-developed software.

Many of the specific tools, such as Teamwork and Interleaf Publisher would be retained

in the alternative.

CSC/SSD - UHCL/RICIS 27 30 April 92

4.2

CSC/TR-92/6054
GSDE Software CM

CORCASE, the software reposit0_, -was developed - for Unix systems to support the DoD

software development s_d_d 2167A. It wo_id _m___ed torun on VAX Ultdx

servers and to match JSC-specified life-cycle definitions.

Configu rat|onmanagement

The CORCASE system would provide software CM services extending from developers'

workstations to the test and integration environment. It would interface with the formal

CM residing on the GS/SPF. The Rational CM system (CMVC), with its detailed Ada
code integration capabilities and subsystem managernent ("frozen views") approach,

would be partially replaced by the combination of CORCASE and the Atherton Software

Backpl_e, __: _ i.

The proposed solution would provide much better support for non-Ada code, because all

source code would be managed in the same form. (The Rational R1000 is not a very

congenial environment for non-Ada code). Some of the benefits of the R1000 would, of

course, be lost, most notably the incremental compilation Capability.

The SSE project has developed a substan-ti 0 t 0f to]_-tegra_the Oracle-

based CM with the R1000-based CMVC. This software goes considerably beyond the

capabilities provided by Rational. This software automates significant portions of the

checkin-checkout and verification process for initial entry into the CM system and

subsequent entry of changes.

The MSC contractor has proposed to construct abatch f'fle _terface using tl_e same

capabilities on the GS/SPF and newly developed interface support in CORCASE. The

difficulty involved in _s construction would...... presumably__ :_be on the same order of

magnitude as the original development by the SSE project.

Although details are not clear, it appears that the CORCASE system would support

direct, managed f'de transfer capability_tween _e SPE and the IQTE, as discussed in

section 3.4 of this report.

%e propos_ devel0p_nt_tecture appearStoreplace any use Of the GS/SPF-based

Software Test Management System with CORCASE test management.

4.3 Assessment

There are not enough details available, nor has there been sufficient time to fully

investigate the CORCASE-Atherton alternative. Based on documentation from Atherton

and from Verdix (the Ada compiler vendor), the tool integration aspects of the
CORCASE alternative are doable. However, de_ed information on CORCASE itself

was considered by Loral to be proprietary information and was not available to the

RICIS study team.

!
II

I
II

II
mm

II

!
!
m

I

i
@

I

m
m

-i
II

I
m

II

|
m
!

i

II
II

I
m

IB

J

II

CSC/SSD - UHCL/RICIS 28 30 April 92

m

z

..w

k •

w

CSC/SSD

CSC/TR-92/6054
GSDE Software CM

There are several issues to be considered from the perspective of GSDE interfaces:

1. The "batch file interface" development to integrate CORCASE with formal CM

may be a significant effort, and may not be available to support early stages of

software acceptance test and integration when delivery to formal CM first takes

place. Without detailed CORCASE information, this risk is impossible to assess.

Although the SSE CM Oracle interface definitions are published, duplicating the

Rational-Oracle interface may not be trivial.

2. The relative difficulty of automating CM interfaces, a stated goal of the SSCC

project, cannot be assessed.

3. The ability to bypass the GS/SPF, as CORCASE interacts directly with the test

environment, raises concern that formally-controlled software may not always

match the software that gets tested or even delivered.

4. STM capabilities are expected to evolve into the formal build-delivery process for

Space Station software. If CORCASE is a substitute for STM, it may also have

to evolve to match the SSE-developed capabilities.

5. There is no experience with CORCASE or the Atherton Software Backplane in

the NASA environment. The DoD software environment is different in many

respects, particularly in terms of documentation requirements and cost.

CORCASE may well be an excellent solution for problems not found in the JSC

environment.

6. The Atherton Software Backplane is essentially a data repository. CORCASE is

essentially a data repository. It is not clear how the Atherton interfaces will

interact with the CORCASE data systems.

7. The present CORCASE will have to be modified to match current requirements.

It is reasonable to assume that continued modifications will be required to address

changes in requirements. (The SSE project provides ample evidence of

requirements evolution). Cost issues are not directly within then scope of this

study, but interface and schedule and capability considerations are. The fact that

such a continuing development activity, paralleling the SSE project, must occur

to support the MSC alternative raises those considerations.

8. In the event that the CORCASE-Software Backplane approach is phenomenally

successful, the fact that CORCASE is a proprietary tool might prevent other JSC

projects from emulating that success.

The bottom line is that there are many unresolved issues involved in the SSCC project

plan for CM. On the positive side, the SSCC team has consistently demonstrated a great

concern for CM issues and a high degree of professionalism. They clearly take the risks

of inadequate CM very seriously, and have acted to minimize those risks.

On the negative side, the SSE project started out with a proprietary software management

tool, the APCE, and had a rather dramatic lack of success with it.

- UHCL/RICIS 29 30 April 92

CSC/TR-92/6054
GSDE Software CM i

_w
W

i
i

III

!

!

R

m!

!
B

u

• _ _ _ _ _

_m

_m
Rm

m
I

_: == 9d ::}

I

!

m
!
i

CSC/SSD - UHCL/RICIS 30 30 April 92

-i "

w

Section 5, Space Station Training Facility

CSC/TR-92/6054
GSDE Software CM

The Space Station Training Facility will involve workstations, standard data processors

(SDPs), special-purpose input and output devices, and medium-scale mainframe

computers to provide a functional simulation of Space Station Freedom. The SSTF is

being developed for JSC on the Training Systems Contract. It will provide major

support for mission crew training and will provide a venue for demonstrating and testing

user interface systems developed for on-board use.

The SSTF software development effort will use Ada for the most part, with some

special-purpose elements using C or other languages. The development environment was
described in the June 1991 RICIS study report, in appendices B and D. Additional detail

is provided by the "SSTF Software Configuration Management Approach" briefing,

September 1991.

5.1 Overall software workflow

v

SSTF software developers will build software using workstations and Rational R1000

development computers. The SSE-provided STM and formal CM capabilities on the

GS/SPF will be used to move software into the target environment for compilation,

integration and test. The SSTF development plan incorporates a "reconfiguration

Rational" that will serve as an adjunct to the reconfiguration (Re.con) mainframe in the

target environment. The Re.con mainframe will act as the CM host for intermediate

products and command scripts.

Developers will have access from workstations to the target environment in order to test

interactive software, to monitor test execution, and to debug code in development.

Presumably the Recon Rational will simplify the debugging process, although

workstation-based text editors will also serve the purpose.

Access controls in the target environment will prevent developers from modifying

resources that are used in training or are undergoing formal test. Nevertheless, the

considerations applying to mixed environments, which were described in section 3 of this

report, are applicable to the TSC development process.

5.2 Configuration management

The TSC CM plan describes a graduated approach to CM at different levels of rigor and

authorization. This reflects a clear recognition of the operational considerations

described in section 3, and is well suited to the complexity and size of the project. The

TSC plan is to distribute the CM function across three different platforms based on the

type of object to be managed (e.g., source, compilation products, executable loads). The

stated purpose of this distributed system is to minimize waste and redundancy.

PRECEDING PAGE BLANK NOT FILMED

CSC/SSD - UHCL/RICIS 31 30 April 92

CSC/TR-92/6054
GSDE Software CM

The TSC approach identifies the level of authority responsible for changes at each stage

of development through de_ve_ to 0perations _and SuStain[hg engi_n_ring: It specifically

encompasses the need to have different versions in different phases of development at the

same time. It states that NASA will have full visibility into the different CM systems.

5.3 Assessment

The SSTF CM plan is described as a three-part distributed integrated system. It attempts

to partition the software process along lines that _ _imize the need for

communications across the boundaries of the distribution. Source code is in one place,

compiled code in another, operational software is in a third. The intent is to store and

manage products where they are used.. :

(The CM plan also describes a fourth element, developer-level CM, which is not

addressed in this study).

The CM plan also provides a detailed map of what inputs, products, activities, and

management occur at steps throughout the development life cycle. In addition, it

provides a thoughtful (though negative) response to earlier RICIS study findings.

The basic assessment of the study team is that the TSC plan focuses too much on making

things easy (simplifying interfaces, putting things where they'll be used, etc.), and not

enough on making things secure.

Although many of the recommendations made previously have in fact been incorporated

into the SSTF CM plan, there is still too little detail to determine whether or not the

protections described will meet the requiremen_ detailed in section 2 of this report.

The study team found three areas of particular concern in the SSTF CM approach: the

use of automation (or lack thereof), the effectiveness of (and visibility into) distributed

CM systems, and the interface complexity in distributed CM. In all three areas the major

f'mding was a lack of information with which to make a complete assessment, coupled

with an approach that emphasized development efficiency rather than configuration

reliability.

CM Automation

The SSTF CM approach does not identify which elements of the process will rigorously

controlled and which will be up to developer discretion. The different enforcement

mechanisms are treated as interchangeable.

Citing from the September 1991 briefing:

I

g

!
m

w
g

I

I

n___

mm
n
J

m

J

m
m

g

m

g

m

D

i

II

_. . =

CSC/SSD - UHCL/RICIS 32 30 April 92 J

!

w

w

7_._,-

CSC/TR-92/6054
GSDE Software CM

Movement of software and data between these environments is controlled

by automation, by access controls, and by procedural controls. Automated

Interfaces and manual procedures will control this integration [of the

distributed CM systems]. SSTF's division of these systems reduces the

complexity of the interfaces.

This policy statement provides no assessable information, and ignores the reality that

automated controls are markedly more effective than manual procedures in

accomplishing the goals of CM. If programmers could be relied upon to fully comply

with manual procedures, there would be no need for CM tools. Yet the SSTF outlook on

CM automation is unenthusiastic (from the same briefing):

Complete automation of this interface [between development and test

environments] would be expensive, would slow and complicate

development, and is unfeasible at preset. TSC has learned important

lessons from attempts to centralize and automate CM in previous

simulation complexes.

SSTF CM process is currently as automated as is feasible.

In view of the fact that TSC has not identified what elements of the interface are

automated, or what tools (COTS, SSE-provided, or developed) will be used in the CM

process, the SSTF contention ("as automated as is feasible") can be neither disputed nor

confirmed.

Effectiveness and visibility of distributed CM systems

This issue is quite simple: while the CM system specified for source code (the SSE CM

system on the GS/SPF) is a known quantity, the Recon and Ops CM systems are

unknown. If the Recon and Ops CM systems provide the same degree of rigor and

visibility as the GS/SPF CM system, the risk will be small.

The emphasis of the SSE-provided formal CM system is on accountability and control,

not on developer convenience. It may be painful, but will be dependable. Similarly, the

degree of visibility into the SSE product is fully defined in the SSE requirements and

design documentation.

Until those systems are specified and assessed, this area of risk will remain.

Distributed CM interfaces

The TSC allocation of CM ,functionality to different platforms for different types of

products makes sense from an operational view. Source code is processed by editors

which exist in the development environment, and should reside there. Compiler output is

used (to build load images) in the target environment, and so on. Operationally, the

allocation makes sense. However, when the requirements defined for CM are used as a

basis for assessment, the effectiveness of these allocations is more ambiguous.

CSC/SSD - UHCL/RICIS 33 30 April 92

CSC/TR-92/6054
GSDE Software CM

Onerequirementis to beableto reconstitutedeliveredsoftwarefrom source;anotheris
to be able to reproduce a test session. Distributed CM complicates these activities_

To rebuild a product in the SSTF approach, source code from the GS/SPF CM system
must be married with compilation scripts (and possibly intermediate libraries) from the

Recon CM system. This means that if either CM system is changed, the other must be

informed. (If the scripts on the Recon CM system are modified, the fact that the source

code is unchanged _ _ _ the more confusing,) _:

Repeating a test will involve test scripts and test data from GS/SPF CM and loads from

OPS CM. if-die retest invoives rec0mpiling a teSt article, filI-thi_e- CM systems become

involved. All three must therefore bekept synchronized, and changes t5 an)/one must be

reflected in two other places. This compounds the complexity of the interface, instead of

simplifyingit- _!; , _ _i _<:.... _____ _.

The problem with distributed CM, _ TSC has designed it, is that the reliability of the

system is no better than the lowest common denominator. Rather than redundancy

(which would _prove reliability) we have seri_ inter_aCe_ wherein the total process is

no more secure than its least secure step.

Summary

The assessmentofthe Study team is that TSC has put a lot oTeffort into formulating a

comprehensive plan. This pi_ isSubs_ti_y knproved frbm that which Was0riginally

reviewed. TSC's approach shows clear appreciation for the technical requirements of

software confi_ation m_agemen_ and providesjustifiCad0ns for those areas where it
deviates from the straightforward SSE-provided mechanism.

Nonetheless there is a degree of risk inherent in the lack of specific detail (e.g., the name

of COTS software CM tools or the design specification of a developed tool). That risk is

made more significant by what we perceive as a lack of balance between developer

convenience and configuration security. Finally, we believe there is a significant

likelihood that the proposed distributed CM system will fail to ensure product

consistency without signific_t manual overhead.

u

m

m

g

In

i
m

u

m

m

III

g

!
III

IB
U

m
nm

II

III

lit

III

z

II

III

m
g

m
Ip

III

CSC/SSD - UHCL/RICIS 34 30 April 92

mR=

il

w

v.....

:..._

Section 6 - Recommendations

CSC/TR-92/6054
GSDE Software CM

The primary recommendation of this study (as it concludes) is that some independent
review of the CM plans of both the SSCC and the SSTF projects should continue to

occur. In our opinion, the responsiveness of both contractors, whether enthusiastic or
grudging, has led to a greater awareness of the requirements of CM and better plans for
implementing it.

A secondary recommendation is that the use of the SSE STM be strongly encouraged,
and that interface tools and scripts be built to adapt STM to ttie ground system

environment. This would serve to estabfish a degree of commonality between SSCC and

SSTF, and would provide more uniform information to NASA on the progress of testing

in the two projects.

Specific recommendations for each ground systems are discussed below.

6.1 Space Station Control Center

The basic recommendations are essentially drawn from the assessment in section 5.

1. The alternative approach presented by MSC using CORCASE as a replacement

(in part) for the SSE needs to be evaluated in detail. The following specific items
should be considered:

a. What is the commitment to maintaining and evolving CORCASE as

development requirements change, and as problems arise? How can the

contractual problems of the APCE (the unlamented SSE tool) be avoided for

CORCASE? Who will have rights to use the modified, evolved tool?

b. How do two repository-based systems (CORCASE and Atherton) .-
productively co-exist? Is information stored redundantly? Can it be shared

with other systems?

c. What tailoring is being done to make CORCASE compatible with JSC
development phases and methods?

d. How difficult will it be to interface CORCASE with the Oracle-based CM
and STM?

e. What is the impact of losing the incremental-compilation capability as the

R1000 compiler is replaced with the Verdix Ada compiler?

f. How easy is CORCASE to use in real projects? Who has experience with it

and what are the positive and negative elements of that experience?

2. The CM should plan be clarified to ensure that CM storage on the GS/SPF does

not become an afterthought (see figure 8). (For example, it could be required that
all deliveries be generated from source code entirely from the GS/SPF.)

CSC/SSD - UHCL/RICIS 35 30 April 92

,

CSC/TR-92/6054
GSDE Software CM

The interface with STM should be clarified and used during testing, even if

CORCASE provides an alternative mech_isrrt-_:_

6'_ __pace StatiOn T-raining Pacility _

.

5.

Most of the detailed recommendations are made in the assessment in section 5. The

study team rec0riimends:

I. The GS/SPF CM system should be used as a master CM system evenffroutine

CM is handles by Re,con or Ops CM. There should be one place which is the

final authority and a complete source for regenerating products, and the formal

CM system is the best tool for that job. _ _

2. Automated procedures should be developed for generation of deliverable

products.

3. System security procedures should be clarified to state that source code never
goes from the integration or operational systems into the development area or into

the GS/SPF. (As currently described, code being uni t tested can be modified in
the test environment and returned to the SPE).

The tools and procedures to be used for CM should be specified in detail, either

as COTS .products Or as specifi c development efforts. _

Once the tools are specified, they should be subject to independent review in

terms of their configuration security and provisions for NASA visibility into the
CM databases.

I
nI

m

!
lib

|
m
n

n

U

m

I

m

!

m

J

I

L

II

i

g

g

l)

ira)

CSC/SSD - UHCL/RICIS 36 30 April 92

J

m

w

w

=.

w

M

Glossary
AAS

Ada

C

CASE

CM

CORCASE

COTS

CR

CSC

DR

FAA

formal CM

GS/SPF

GSDE

IQTE

JSC

NASA

OI

QT

repository

RICIS

CSC/TR-92/6054
GSDE Software CM

Advanced Automation System: a large real-time ground support

system (for air traffic management) currently under development

in Ada, using Rational R1000 development computers and IBM

mainframe target computers

the primary programming language for the Space Station Freedom

Project. Ada is a trademark of the US Department of Defense

a programming language commonly used with Unix systems and

applications pmgramming

computer-aided software engineering

configuration management

proprietary life-cycle management environment for software

development, proposed for use on the MSC

commercial off'the-shelf (usually refers to software or hardware)

change request: a formal request to change a requirement

Computer Sciences Corporation

discrepancy report: a formal report that a system (in this case,

usually software) does not meet its requirement specification

Federal Aviation Administration (customer for AAS project).

the SSE-provided CM system residing on the GS/SPF; it manages

the software that has been delivered to NASA, a provides a

controlled baseline from which deliveries are made to operations

Ground Systems/Software Production Facility (the mainframe

computer in the GSDE that hosts the SSE-provided SPF software)

Ground Systems Development Environment

integration and qualification test environment (a term used in this

report for the target environments of the two projects)

Lyndon B. Johnson Space Center, Houston, Texas

National Aeronautics and Space Administration

operational increment (the added functionality in a new release)

qualification testing--the last testing stage prior to delivery to

operational use (in the GSDE life cycle)

a structured collection of project data generated and used by CASE

tools and maintained by a repository manager

Research Institute for Computers and Information Systems

CSC/SSD - UHCL/RICIS 37 30 April 92

SDP

snapshot

Software BackPlane

SPE

SPF

SSCC

SSE

SSFP

SSTF

STM

STR

UHCL

CSC/TR-92/6054
GSDE Software CM

standard data processor (the onboard processor specified for Space
Station Freedom)

a complete stored copy of a software component or subsystem at a

specified point in its development; subsequent changes to the

so_a_ Can be comparedto the snapshot

a CASE support framework from Atherton Technology, provides

repository services and toolinterfacesto third-party tools

software production environment; a network of servers and

workstations used for the design and development of software

software production facility: an SSE term for the combination of

hardware [DEC VAX or IBM mainframe] and software [SSE-

developed and COTS] that anchors a local network of

development servers and workstations

Space Station Control Center :

software support environment (specifically, the SSFP SSE)

Space Station Freedom Project

Space Station Training Facility

software test management: a capability of the SSE

system (or software) trouble report: a less-formal equivalent to a

DR (discrepancy report)

University of Houston - Clear Lake

|
I
m
i

i
!
m

!
i
I

g

i

g

m

l

i

J

J

i

J

g

i

ID

II

CSC/SSD - UHCL/RIClS 38 30 April 92

